Terrain Analysis in Real-Time Strategy Games: An Integrated Approach to Choke Point Detection and Region Decomposition
نویسنده
چکیده
Autonomous agents in real-time strategy (RTS) games lack an integrated framework for reasoning about choke points and regions of open space in their environment. This paper presents an algorithm which partitions the environment into a set of polygonal regions and computes optimal choke points between adjacent regions. This representation can be used as a component for AI agents to reason about terrain, plan multiple routes of attack, and make other tactical decisions. The algorithm is tested on a set of popular maps commonly used in international Starcraft competitions and evaluated against answers made by human participants. The algorithm identified 97% of the choke points that the participants found and also identified a number of bottlenecks that human participants did not recognize as choke points.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملAutomated terrain analysis in real-time strategy games
Real-time strategy (RTS) games represent a mainstream genre of video games. They are also practical test-beds for intelligent agents, which have received considerable interest from Artificial Intelligence (AI) researchers, in particular game AI researchers. Terrain knowledge understanding is a fundamental issue for RTS agents and map decomposition methods can help AI agents in representing terr...
متن کاملReal-time damage detection of bridges using adaptive time-frequency analysis and ANN
Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...
متن کاملReconfiguration of Supply Chain: A Two Stage Stochastic Programming
In this paper, we propose an extended relocation model for warehouses configuration in a supply chain network, in which uncertainty is associated to operational costs, production capacity and demands whereas, existing researches in this area are often restricted to deterministic environments. In real cases, we usually deal with stochastic parameters and this point justifies why the relocation m...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کامل